## New Pyrrole Alkaloids with Bulky N-Alkyl Side Chains Containing Stereogenic Centers from Lycium chinense

by Ui Joung Youn<sup>a</sup>)<sup>1</sup>), Yun-Seo Kil<sup>a</sup>)<sup>1</sup>), Joo-Won Nam<sup>a</sup>), Yoo Jin Lee<sup>a</sup>), Jinwoong Kim<sup>b</sup>), Dongho Lee<sup>c</sup>), Je-Hyun Lee<sup>d</sup>), and Eun-Kyoung Seo<sup>\*a</sup>)

<sup>a</sup>) The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea (phone: +82-2-32773047; fax: +82-2-32773051; e-mail: yuny@ewha.ac.kr)

<sup>b</sup>) College of Pharmacy, Seoul National University, Seoul 151-742, Korea <sup>c</sup>) School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea

<sup>d</sup>) Department of Korean Medicine, Dongguk University, Geongju 780-714, Korea

Four new pyrrole alkaloids, methyl 2-[2-formyl-5-(methoxymethyl)-1*H*-pyrrol-1-yl]propanoate (**1**), methyl 2-[2-formyl-5-(methoxymethyl)-1*H*-pyrrol-1-yl]-3-(4-hydroxyphenyl)propanoate (**2**), dimethyl 2-[2-formyl-5-(methoxymethyl)-1*H*-pyrrol-1-yl]butanedioate (**3**), and dimethyl 2-[2-formyl-5-(methoxymethyl)-1*H*-pyrrol-1-yl]pentanedioate (**4**), were isolated from the AcOEt extract of the fruits of *Lycium chinense* MILLER (Solanaceae). The stereogenic center C(2) in the bulky *N*-alkyl side chain in each of **1**– **4** seems to hold the H-atoms of nearby CH<sub>2</sub> groups, CH<sub>2</sub>(7') and CH<sub>2</sub>(3) (if R = H), leading to two different chemical shifts in the <sup>1</sup>H-NMR spectrum due to their diastereotopic characteristics. In the <sup>1</sup>H-NMR data of each of **2**–**4**, the enhancement of H–C(2) signal was inhibited by the R group, probably due to steric hindrance, and its chemical shift was influenced by the anisotropy effect. The structures of **1**–**4** were elucidated by analysis of various spectroscopic data, including 1D- and 2D-NMR.

**Introduction.** – The fruits of *Lycium chinense* MILLER (Lycii Fructus, Solanaceae) are being used as a traditional tonic medicine for treating liver and kidney deficiency, and for moistening lungs [1]. There exist reports on the constituents of this species, including betaine [2], cerebroside [3], pyrrole alkaloid [4], and zeaxanthin [5], together with their biological effects such as antihepatotoxic [3-5], antioxidant [6], and neuroprotective activities [2]. In the present study, the AcOEt fraction of a Lycii Fructus extract was investigated and afforded the four new pyrrole alkaloids, 1-4 (*Fig. 1*).



Fig. 1. Structures of Compounds 1-4 isolated from the fruits of L. chinense

<sup>1</sup>) These co-authors contributed equally to this work.

© 2013 Verlag Helvetica Chimica Acta AG, Zürich

**Results and Discussion.** – Compound **1** was obtained as an optically active white powder, which showed a molecular-ion peak at m/z 225.1002 ( $M^+$ ) in the HR-EI-MS, corresponding to the formula  $C_{11}H_{15}NO_4$ . The UV spectrum of 1 exhibited an absorption maximum at 260 nm (log  $\varepsilon$  3.9), indicating the presence of a conjugated system [7]. The <sup>1</sup>H-NMR spectrum of **1** (*Table*) showed a set of two *doublets* at  $\delta(H)$ 6.32 (H–C(4')) and 7.07 (H–C(3')) with a vicinal coupling constant of 4.2 Hz. The combined evidence indicated the presence of a 2,5-disubstituted pyrrole derivative [4][8]. The <sup>1</sup>H- and <sup>13</sup>C-NMR spectra exhibited signals of one O-bearing CH<sub>2</sub> group  $(\delta(H) 4.54 (d, J = 13.0, H_a - C(7'))$  and 4.48  $(d, J = 13.0, H_b - C(7'))/\delta(C) 66.5 (C(7')))$ , an CHO group (9.34 (s, 1 H)/180.7 (C(6'))), and a MeO group (3.31 (s, 3 H)/58.0 (MeO-C(7'))), which, taken together, all clearly indicated the presence of a 5-(methoxymethyl)-1*H*-pyrrole-2-carbaldehyde derivative [8][9]. Signals of a methyl propanoate moiety appeared at  $\delta(H)$  5.37 (q,  $J = 6.8, 1 \text{ H})/\delta(C)$  55.9 (C(2)); 1.64 (d,  $J = 6.8, 3 \text{ H}/18.0 (C(3)); 3.66 (s, 3 \text{ H})/52.9 (MeOOC(1)); and \delta(C) 172.4 (C(1)). The$ HMBC experiment of 1 showed three-bond connectivities H-C(2)/C(2') and C(5'), which provided strong evidence for the assignment of C(2) at the N-atom in the pyrrole ring (Fig. 2). The stereogenic center C(2) seems to hold the H-atoms of  $CH_2(7')$ , leading to two different chemical shifts in the <sup>1</sup>H-NMR spectrum of **1** due to their diastereotopic characteristics. In case of previously reported pyrrole alkaloids containing bulky N-alkyl groups without stereogenic centers, two H-atoms of  $CH_2(7')$  gave rise to identical peaks in their <sup>1</sup>H-NMR spectra [4]. As a result, the structure of 1 was elucidated as methyl 2-[2-formyl-5-(methoxymethyl)-1H-pyrrol-1yl]propanoate.



Fig. 2. Important <sup>1</sup>H,<sup>1</sup>H-COSY (-), NOESY ( $H \leftrightarrow H$ ), and HMB ( $H \rightarrow C$ ) correlations of 1

Compound **2** was obtained as a white powder. Its molecular formula was established as  $C_{17}H_{19}NO_5$  on the basis of its molecular-ion peak at m/z 317.1258 ( $M^+$ ) in the HR-EI-MS. The <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of compound **2** were similar to those of **1**, except for the following peaks: the signals of a 1,4-disubstituted benzene ring system appeared at  $\delta(H)$  6.63 (d, J = 8.4, 2 H)/ $\delta(C)$  131.2 (C(2'', 6'')); 6.56 (d, J = 8.4, 2 H)/116.3 (C(3'', 5''));  $\delta(C)$  157.5 (C(4'')), and 129.6 (C(1'')), together with those of a CH<sub>2</sub> group at  $\delta(H)$  3.56 ( $dd, J = 14.3, 3.4, H_a$ –C(3)), 3.13 ( $dd, J = 14.3, 11.2, H_b$ –C(3))/ $\delta(C)$  38.1 (C(3)), instead of the Me group at C(3) in **1**. The HMBCs CH<sub>2</sub>(3)/C(1), C(2), and C(2'', 6''), and H–C(2'', 6'')/C(3) and C(4'') suggested that the 4-hydroxyphenyl moiety was connected to C(3), thus extending the former methyl propanoate functionality of **1** in compound **2**. In the <sup>1</sup>H-NMR spectrum, the two H-atoms of CH<sub>2</sub>(7') attached to the pyrrole ring in **2**, resonated at  $\delta(H)$  3.87 and 3.65, whereas the two H-atoms in **1** appeared at  $\delta(H)$  4.54

|           |                           |             |                           |             |                              | 11    |                                 |               |
|-----------|---------------------------|-------------|---------------------------|-------------|------------------------------|-------|---------------------------------|---------------|
| Position  | 1                         |             | 2                         |             | 3                            |       | 4                               |               |
|           | δ(H)                      | $\delta(C)$ | ð(H)                      | $\delta(C)$ | δ(H)                         | δ(C)  | φ(H)                            | $\delta(C)$   |
| 1         |                           | 172.4       |                           | 171.4       |                              | 172.9 |                                 | 171.7         |
| 2         | 5.37 (q, J = 6.8)         | 55.9        | 5.24 (br. s)              | 62.8        | 5.72 (br. s)                 | 56.6  | 5.34 (br. s)                    | 59.2          |
| 3         | $1.64 \ (d, J = 6.8)$     | 18.0        | 3.56 (dd, J = 14.3, 3.4), | 38.1        | 3.47 (dd, $J = 17.1, 5.8$ ), | 37.9  | 2.64 - 2.73 (m)                 | 27.9          |
|           |                           |             | 3.13 (dd, J = 14.3, 11.2) |             | $2.93 \ (dd, J = 17.1, 7.6)$ |       |                                 |               |
| 4 v       |                           |             |                           |             |                              | 170.9 | 2.13 <i>–</i> 2.25 ( <i>m</i> ) | 31.1<br>174 9 |
| 5, 6      |                           | 133.8       |                           | 133.9       |                              | 133.8 |                                 | 134.1         |
| 3,        | 7.07 (d, J = 4.2)         | 127.1       | $7.11 \ (d, J = 4.2)$     | 127.6       | 7.10 (d, J = 4.0)            | 127.5 | 7.10 (d, J = 4.2)               | 127.5         |
| 4         | (6.32 (d, J = 4.2))       | 113.0       | (6.13 (d, J = 4.2))       | 112.3       | (0.32 (d, J = 4.0))          | 113.0 | (6.34 (d, J = 4.2))             | 113.2         |
| 5'        |                           | 141.2       |                           | 142.7       |                              | 142.3 |                                 | 142.1         |
| 6′        | 9.34(s)                   | 180.7       | 9.41(s)                   | 180.8       | 9.34 (s)                     | 180.8 | 9.35 (s)                        | 180.8         |
| 7'        | 4.54, 4.48 (2d, J = 13.0) | 66.5        | 3.87, 3.65 (2d, J = 13.4) | 66.5        | 4.78, 4.45 (2d, J = 13.0)    | 66.8  | 4.49, 4.44 (2d, J = 13.0)       | 66.5          |
| 1"        |                           |             |                           | 129.6       |                              |       |                                 |               |
| 2", 6"    |                           |             | 6.63 (d, J = 8.4)         | 131.2       |                              |       |                                 |               |
| 3", 5"    |                           |             | (6.56 (d, J = 8.4))       | 116.3       |                              |       |                                 |               |
| 4"        |                           |             |                           | 157.5       |                              |       |                                 |               |
| MeO-C(7') | 3.31(s)                   | 58.0        | 3.11 (s)                  | 57.9        | 3.30(s)                      | 58.1  | 3.30(s)                         | 58.1          |
| MeOOC(1)  | 3.66(s)                   | 52.9        | 3.70(s)                   | 52.9        | 3.62(s)                      | 52.5  | 3.67(s)                         | 53.0          |
| MeOOC(4)  |                           |             |                           |             | 3.66(s)                      | 53.2  |                                 |               |
| MeOOC(5)  |                           |             |                           |             |                              |       | 3.60(s)                         | 52.2          |
|           |                           |             |                           |             |                              |       |                                 |               |

É Ę 6 F 5 13.7

1484

## Helvetica Chimica Acta – Vol. 96 (2013)

and 4.48. The H–C(2) of compound **2** appeared at  $\delta(H)$  5.24, whereas that of compound **1** appeared at  $\delta(H)$  5.37. These shielding effects of H-atoms at C(7') and C(2) are probably due to the magnetic anisotropic effect of the phenyl ring in **2**. In addition, a steric hindrance of the phenyl ring seems to be responsible for the weak intensity of H–C(2) in **2**, which appeared as a broad *singlet*, whereas that of **1** resonated as a *quadruplet* with normal intensity. This phenomenon was also observed for a similar compound, methyl 2-[2-formyl-5-(methoxymethyl)-1*H*-pyrrol-1-yl]-3-phenylpropanoate [8], which was different from **2** only in the presence of a OH group at C(4''). The H-atoms of CH<sub>2</sub>(7') and CH<sub>2</sub>(3) showed diastereotopic characteristics in the <sup>1</sup>H-NMR spectrum of **2** due to the presence of a stereogenic center C(2) as described for **1**. Thus, **2** was determined as methyl 2-[2-formyl-5-(methoxymethyl)-1*H*-pyrrol-1-yl]-3-(4-hydroxyphenyl)propanoate.

Compound 3 was obtained as a white powder and showed a molecular-ion peak at m/z 283.1059 ( $M^+$ ) in the HR-EI-MS, consistent with the formula C<sub>13</sub>H<sub>17</sub>NO<sub>6</sub>. The <sup>1</sup>Hand <sup>13</sup>C-NMR spectra of **3** were similar to those of **1**, except for the presence of COOMe signals at  $\delta(H)$  3.66 (s, 3 H)/ $\delta(C)$  53.2 (*Me*OOC(4)), and  $\delta(C)$  170.9 (C(4)), along with those of a CH<sub>2</sub> group, forming part of an ABX-system at  $\delta(H)$  3.47 (dd, J =  $17.1, 5.8, H_a - C(3)$  and 2.93 (dd,  $J = 17.1, 7.6, H_b - C(3)$ )/ $\delta(C)$  37.9 (C(3)), instead of the Me group at C(3) in **1**. These peaks, along with signals of a CH group at  $\delta(H)$  5.72 (br. s,  $1 \text{ H}/\delta(\text{C})$  56.6 (C(2)), of a MeO group at  $\delta(\text{H})$  3.62 (s, 3 H)/ $\delta(\text{C})$  52.5 (MeOOC(1)), and of another ester COOMe C-atom at  $\delta(C)$  172.9 (C(1)) indicated a dimethyl butanedioate moiety in compound 3 [10]. The presence of this group was supported by the molecular-ion peak at m/z 283 ( $M^+$ ) and the base peak at m/z 138 ([M-145 $(MeOOCCHCH_2COOMe)]^+$  for the pyrrole moiety (loss of a dimethyl butanedioate group) in the EI-MS spectrum. The HMBC features MeOOC(1)/C(1), MeOOC(4)/C(1)C(4), and  $CH_2(3)/C(2)$  and C(4) provided unambiguous evidence for a substituted dimethyl butanedioate moiety. On the other hand, the <sup>1</sup>H-NMR data of 3 showed a weak broad singlet at  $\delta(H)$  5.72 for H–C(2) which was much more deshielded than that of compound 1, probably due to the anisotropy effect of the C=O functionality of the R group in 3. The weak enhancement of the H-C(2) signal seems to be also affected by the R group, COOMe functionality in **3** [8]. In addition, each H-atom of  $CH_2(7')$  and  $CH_2(3)$  in 3, appeared at two different chemical shifts due to the stereogenic center C(2). Therefore, **3** was identified as dimethyl 2-[2-formyl-5-(methoxymethyl)-1Hpyrrol-1-yl]butanedioate.

Compound **4** was obtained as a white powder which exhibited a molecular-ion peak at m/z 297.1215 ( $M^+$ ) in the HR-EI-MS, corresponding to the formula C<sub>14</sub>H<sub>19</sub>NO<sub>6</sub>. The <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of **4** were similar to those of **3**, except for the presence of an CH<sub>2</sub>CH<sub>2</sub> group resonating at  $\delta$ (H) 2.64–2.73 (m, 2 H)/ $\delta$ (C) 27.9 (C(3)), and 2.13–2.25 (m, 2 H)/31.1 (C(4)), instead of the CH<sub>2</sub> group at C(3) in **3**. The molecular-ion peak at m/z 297 ( $M^+$ ) and the major fragment-ion peak at m/z 138 ([M – MeOOCCH(CH<sub>2</sub>)<sub>2</sub>COOMe]<sup>+</sup>) in the EI-MS spectrum of **4** supported the presence of a dimethyl pentanedioate moiety. The H–C(2) signal of **4** showed a very weak enhancement, probably due to the steric hindrance by the R group, methyl acetate [8]. The stereogenic center C(2) in the bulky *N*-alkyl side chain in **4** also seems to hold the H-atoms of nearby CH<sub>2</sub> groups, CH<sub>2</sub>(7'), resulting in two different chemical shifts of each  $CH_2$  in the <sup>1</sup>H-NMR spectrum of **4**. Therefore, the structure of **4** was elucidated as dimethyl 2-[2-formyl-5-(methoxymethyl)-1*H*-pyrrol-1-yl]pentanedioate.

All the <sup>1</sup>H- and <sup>13</sup>C-NMR resonances of 1-4 were assigned unambiguously according to the 1D- and 2D-NMR data, including COSY, NOESY, HSQC, and HMBC experiments. The absolute configuration at C(2) of 1-4 could not be determined.

This work was funded by *RP-Grant 2010* of Ewha Womans University and by the *Grant 08182 Crude Drugs 258* from *Korea Food and Drug Administration*. This research was also supported in part by the *Ewha Global Top5 Grant 2011* of Ewha Womans University.

## **Experimental Part**

General. Column chromatography (CC): silica gel (SiO<sub>2</sub>; 230–400 mesh, Merck, Germany). TLC: silica gel 60  $F_{254}$  plates (Merck, Germany). HPLC: Prep. HPLC Acme 9000 (Young Lin, Republic of Korea) equipped with YMC-pack Pro  $C_{18}$  column (S-5 µm, 250 mm × 20 mm; YMC Co., Ltd., Japan);  $t_{\rm R}$ in min. UV Spectra: Hitachi U3000 spectrophotometer (Hitachi, Japan);  $\lambda_{\rm max}$  (log  $\varepsilon$ ) in nm. Circular dichroism (CD) spectra: Jasco J-810 CD-ORD spectropolarimeter (Tokyo, Japan);  $\lambda_{\rm max}$  ( $\Delta\varepsilon$ ) in nm. NMR Spectra: Varian UNITY INOVA 400 MHz FT-NMR instrument;  $\delta$  in ppm rel. to Me<sub>4</sub>Si as internal standard, J in Hz. HR-EI-MS: JEOL JMS-700 Mstation mass spectrometer; in m/z.

*Plant Material.* The fruits of *L. chinense* were collected in Cheongyang-gun, Chungcheongnam-do, Korea, in May 2009, and were identified by one of the authors, *J.-H. L.* A voucher specimen (No. EAC274) has been deposited with the Natural Product Chemistry Laboratory, College of Pharmacy, Ewha Womans University.

*Extraction and Isolation.* The fruits of *L. chinense* (15 kg) were extracted with MeOH (2 × 50 l) under reflux for 4 h. The solvent was concentrated *in vacuo* to yield a MeOH extract (4800 g), which was suspended in dist. H<sub>2</sub>O (41) and successively fractionated with hexane (3 × 41), AcOEt (3 × 41), and BuOH (3 × 41). The AcOEt extract (70 g) was subjected to CC (SiO<sub>2</sub> (2.5 kg); CHCl<sub>3</sub>/MeOH 100 :0  $\rightarrow$  5:5): *Frs.* 1–14. *Fr.* 5 (2.0 g), eluted with 100% CHCl<sub>3</sub>, was subjected to CC (SiO<sub>2</sub> (2.5 kg); CHCl<sub>3</sub>/MeOH 100 :0  $\rightarrow$  9:1): *Frs.* 5.1–5.10. *Fr.* 5.2 (25 mg) was subjected to a prep. HPLC (*RP-C*<sub>18</sub>; MeOH/H<sub>2</sub>O 3:7  $\rightarrow$  4:1; 1 ml/min): **1** ( $t_R$  64; 2 mg), **2** ( $t_R$  37; 1 mg), and **4** ( $t_R$  34; 0.5 mg). On the other hand, *Fr.* 5.6 (35 mg) was further separated by prep. HPLC (*RP-C*<sub>18</sub>; MeOH/H<sub>2</sub>O 3:7  $\rightarrow$  4:1; 1 ml/min): **3** ( $t_R$  70; 0.5 mg).

*Methyl* 2-[2-Formyl-5-(*methoxymethyl*)-IH-pyrrol-1-yl]propanoate (1). White powder. UV (MeOH): 260 (3.9). CD (MeOH): 332 (-13.4). <sup>1</sup>H- and <sup>13</sup>C-NMR: *Table*. EI-MS: 225 ( $100, M^+$ ), 196 (55), 150 (30), 138 (62), 134 (85). HR-EI-MS: 225.1002 ( $M^+$ , C<sub>11</sub>H<sub>15</sub>NO<sub>4</sub><sup>+</sup>; calc. 225.1001).

*Methyl 2-[2-Formyl-5-(methoxymethyl)-1*H-*pyrrol-1-yl]-3-(4-hydroxyphenyl)propanoate* (**2**). White powder. UV (MeOH): 260 (3.7). CD (MeOH): 255 (+17.1), 324 (-9.4). <sup>1</sup>H- and <sup>13</sup>C-NMR: *Table*. HMBCs: *Me*OOC(1)/C(1); CH<sub>2</sub>(3)/C(1), C(2), C(1''), C(2''), C(6''); H–C(3')/C(2'), C(4'), C(5'), C(6'); H–C(4')/C(2'), C(3'), C(5'); H<sub>a</sub>–C(7')/C(4'), *Me*O–C(7'); H<sub>b</sub>–C(7')/C(5'), *Me*O–C(7'); *Me*O–C(7'); H–C(2'',6'')/C(4''); H–C(3'',5'')/C(1''), C(4''), EI-MS: 317 (65, *M*<sup>+</sup>), 179 (15), 178 (95), 140 (100), 138 (10), 120 (30), 108 (45). HR-EI-MS: 317.1258 (*M*<sup>+</sup>, C<sub>17</sub>H<sub>19</sub>NO<sub>5</sub><sup>+</sup>; calc. 317.1263).

*Dimethyl 2-[2-Formyl-5-(methoxymethyl)-1*H*-pyrrol-1-yl]butanedioate* (**3**). White powder. UV (MeOH): 260 (4.2). CD (MeOH): 329 (-15.9). <sup>1</sup>H- and <sup>13</sup>C-NMR: *Table*. HMBCs: *Me*OOC(1)/C(1); CH<sub>2</sub>(3)/C(1), C(2), C(4); *Me*OOC(4)/C(4); H–C(3')/C(2'), C(4'), C(5'), C(6'); H–C(4')/C(2'), C(5'), C(7'); H<sub>a</sub>–C(7')/C(5'), *Me*O–C(7'); H<sub>b</sub>–C(7')/C(4'), C(5'), *Me*O–C(7'); *Me*O–C(7')/C(7'). EI-MS: 283 (80, *M*<sup>+</sup>), 254 (100), 252 (38), 192 (52), 138 (80). HR-EI-MS: 283.1059 (*M*<sup>+</sup>, C<sub>13</sub>H<sub>17</sub>NO<sub>6</sub><sup>+</sup>; calc. 283.1056).

*Dimethyl 2-[2-Formyl-5-(methoxymethyl)-1*H*-pyrrol-1-yl]pentanedioate* (**4**). White powder. UV (MeOH): 260 (4.0). CD (MeOH): 329 (-9.6). <sup>1</sup>H- and <sup>13</sup>C-NMR: *Table*. HMBCs: *Me*OOC(1)/C(1); CH<sub>2</sub>(3)/C(2), C(4), C(5); CH<sub>2</sub>(4)/C(2), C(3), C(5); *Me*OOC(5)/C(5); H–C(3')/C(2'), C(4'), C(5'), C(6'); H–C(4')/C(2'), C(3'), C(5'), C(7'); H<sub>a</sub>–C(7')/C(5'), *Me*O–C(7'); H<sub>b</sub>–C(7')/C(4'), C(5'),

 $MeO-C(7'); MeO-C(7')/C(7'). EI-MS: 297 (95, M^+), 268 (100), 206 (65), 159 (8), 146 (37), 138 (85). HR-EI-MS: 297.1215 (M^+, C_{14}H_{19}NO_6^+; calc. 297.1212).$ 

## REFERENCES

- D. Bensky, A. Gamble, 'Chinese Herbal Medicine: Materia Medica (Revised Edition)', Eastland Press, Seattle, 1993, p. 333.
- [2] M. J. Park, S. R. Kim, H. Huh, J. H. Jung, Y. C. Kim, Arch. Pharmacal Res. 1994, 17, 343.
- [3] S. Y. Kim, Y.-H. Choi, H. Huh, J. Kim, Y. C. Kim, H. S. Lee, J. Nat. Prod. 1997, 60, 274.
- [4] Y.-W. Chin, S. W. Lim, S.-H. Kim, D.-Y. Shin, Y.-G. Suh, Y.-B. Kim, Y. C. Kim, J. Kim, Bioorg. Med. Chem. Lett. 2003, 13, 79.
- [5] S. Y. Kim, H. P. Kim, H. Huh, Y. C. Kim, Arch. Pharmacal Res. 1997, 20, 529.
- [6] C. C. Lin, S. C. Chuang, J. M. Lin, J. J. Yang, Phytomedicine 1997, 4, 213.
- [7] D. L. Pavia, G. M. Lampman, G. S. Kriz, 'Introduction to Spectroscopy', Thomson Learning, London, 2001.
- [8] W.-Y. Liu, W.-D. Zhang, H.-S. Chen, Z.-B. Gu, T.-Z. Li, Y. Zhou, J. Asian Nat. Prod. Res. 2003, 5, 159.
- [9] M.-J. Don, C.-C. Shen, Y.-L. Lin, W.-J. Syu, Y.-H. Ding, C.-M. Sun, J. Nat. Prod. 2005, 68, 1066.
- [10] P. Dawar, M. B. Raju, R. A. Ramakrishna, *Tetrahedron Lett.* 2011, 52, 4262.

Received November 12, 2012